When a Boolean Function can be Expressed as the Sum of two Bent Functions
نویسندگان
چکیده
In this paper we study the problem that when a Boolean function can be represented as the sum of two bent functions. This problem was recently presented by N. Tokareva in studying the number of bent functions [20]. Firstly, many functions, such as quadratic Boolean functions, MaioranaMacFarland bent functions, partial spread functions etc, are proved to be able to be represented as the sum of two bent functions. Methods to construct such functions from low dimension ones are also introduced. N. Tokareva’s main hypothesis is proved for n ≤ 6. Moreover, two hypotheses which are equivalent to N. Tokareva’s main hypothesis are presented. These hypotheses may lead to new ideas or methods to solve this problem. At last, necessary and sufficient conditions on the problem when the sum of several bent functions is again a bent function are given.
منابع مشابه
Secondary constructions on generalized bent functions
In this paper, we construct generalized bent Boolean functions in n + 2 variables from 4 generalized Boolean functions in n variables. We also show that the direct sum of two generalized bent Boolean functions is generalized bent. Finally, we identify a set of affine functions in which every function is generalized bent.
متن کاملOn cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class
In this paper, we obtain the cross-correlation spectrum of generalized bent Boolean functions in a subclass of MaioranaMcFarland class (GMMF). An affine transformation which preserve the cross-correlation spectrum of two generalized Boolean functions, in absolute value is also presented. A construction of generalized bent Boolean functions in (n+ 2) variables from four generalized Boolean funct...
متن کاملOn generalized semi-bent (and partially bent) Boolean functions
In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function in n variables. Two classes of generalized semi-...
متن کاملGeneralized Semi-bent and Partially Bent Boolean Functions
In this article, a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function is presented. It is demonstrated for every s-plateaued generalized Boolean function in n variables that σ f = 22n+s. Two constructions on generalized semi-bent Boolean functions are presented. A class of generalized semi-bent functions in ...
متن کاملNew Construction for Balanced Boolean Functions with Very High Nonlinearity
In the past twenty years, there were only a few constructions for Boolean functions with nonlinearity exceeding the quadratic bound 2n−1 − 2(n−1)/2 when n is odd (we shall call them Boolean functions with very high nonlinearity). The first basic construction was by Patterson and Wiedemann in 1983, which produced unbalanced function with very high nonlinearity. But for cryptographic applications...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014